
FUZZY CONTROL APPLICATIONS DEVELOPMENT SYSTEM

Antonio Manzanedoa, Jacobo Alvarezb

aDepartment of Systems and Automation Engineering, University of Vigo, Apartado oficial, 36200-VIGO, Spain.
bDepartment of Electronic Engineering, University of Vigo, Apartado Oficial, 36200-VIGO, Spain.

One of the major challenges of an educator is to introduce new technologies in such a practical way that
undergraduates can compare them with existing technologies. To achieve this, most of the time it is necessary to
develop an special equipment because there is no such commercially available system, or it is expensive or
inadequate.

The goal of this work is to design and build an equipment that permits the development and implementation
of fuzzy control applications to teach this new technique and compare it with classical control.

1. HARDWARE

The first decision was to use a general
purpose microprocessor instead of a microcontroller to
choose independently the peripherals such as A/D and
D/A converters to achieve the required characteristics.
The decision is very difficult since there are a lot of
candidates, but in order to reduce the cost of the
equipment, the Intel 8088 was chosen. This
microprocessor has enough capabilities to be the core
of our system, but the key reason to choose it was the
possibility to recycle all the components of old
personal computers (PCs) that are still stored in many
warehouses of our University.

The system RAM memory is composed of
two banks and can be configured between 64 Kbytes
and 512 Kbytes depending on the RAM chips
availability and our needs. We choose to use the same
dynamic RAM chips that came with personal
computers, so the 8237A, DMA controller, was
included to refresh the data in memory.

The system EPROM memory is composed of
two sockets for 2764 (8Kx8 each), one intended to
store the boot and fuzzy monitor routines and the other
prepared to store the application code in stand-alone
operation.

Communications are implemented via RS-232
and RS-485 standards.

The interface with the analog world was
achieved through an A/D converter MAX180 and two
D/A converters MAX526, both from Maxims. The first
one provides 8 multiplexed input channels with 12 bit

resolution and 10 us. conversion time. The D/A
converters have four 12 bit converters each and 3 us.
settling time. They are fast enough for the intended
applications in Mechatronics.

There are, of course, some other
complementary circuits like the 8253 programmable
timer, buffers, registers and 'glue' logic.

2. SOFTWARE

The boot and monitor routines that are
located in the first EPROM of the equipment were
developed in assembler language so they are optimized
for both speed and code size. The software that runs on
the personal computer, intended to communicate with
the equipment, was written in Pascal and, at this time,
the interface is DOS like, not very user friendly.

The definition of the inputs, membership
functions, rules, etc. is done through an ASCII file with
a format defined below.

3. OPERATION MODES

One of the objectives of this project was to
design an equipment with the maximum flexibility so
it could be used, not only to develop fuzzy control
applications (the main goal), but to be used as a
general data acquisition system or to implement non-
fuzzy controllers. With this in mind, several working
modes were developed, some computer attached and
some stand-alone.
- Mode 0: local test. In stand-alone operation, the

equipment reads all analog and digital input channels
and writes the values to the corresponding analog and
digital output channels. This mode is intended for
channel test only.
- Mode 1: memory read. In this mode, communication
between a PC and the equipment is established and we
can read any code or data stored in the RAM or
EPROM modules. It is intended to test the
communications link and the memory blocks.
- Mode 2: slave I/O operation. In this mode, we can
use the equipment as an data acquisition system,
having access to all inputs and outputs from another
equipment. Working in this mode, we can implement
in a computer any type of control algorithms over the
external inputs and transmit the new outputs to the
equipment.
- Mode 3: program load. In this mode, it is possible to
load a new monitor program in the equipment RAM
memory, so we can use this new program instead of the
monitor program stored in the equipment EPROMs.
- Mode 4: stand-alone operation. In this mode, the
equipment transfers the control to the monitor program
stored in the equipment EPROMs. In that way, we can
implement any kind of stand-alone controller.
- Mode 5: slave fuzzy operation. This is one of the
most important modes, that allows the equipment
configuration as a fuzzy control system via the RS-232
port. The computer sends the information about the
membership functions of each input and output and the
rules.
- Mode 6: not defined. For user purposes.
- Mode 7: stand-alone fuzzy operation. Instead of
receiving the configuration through the RS-232 port,
like in mode 5, this data is stored in the equipment
EPROMs, so the system can work alone.

4. FEATURES

- The equipment can implement two or more
independent controllers simultaneously, restricted to
general characteristics.
- The analog inputs are fuse protected.
- The maximum number of inputs are 8, either analog
or digital.
- The resolution of the analog inputs is 10 bits.
- Each input can have up to 8 fuzzy sets or regions.
- Each region must be defined by a membership
function of any polygonal shape.
- The degree of membership can take values between
0 and 127.
- Each rule can have up to 256 (the number of inputs)

complex antecedents. A complex antecedent is one
formed by two or more simple ORed antecedents. A
simple antecedent is formed by up to 8 ANDed
antecedents where each antecedent (pair input-region)
has to be related with any different input variable. A
multiple rule is one with complex antecedents. An
individual rule is one with simple antecedents.
- Each application permits a maximum of 256
individual rules or a combination of individual and
multiple rules.
- The defuzzyfication method is the centroid one.

5. SOLUTIONS

To obtain the value of each output of a fuzzy
controller in a given instant, implies a heavy
computation load. This work has to be done in a short
time to achieve the performance of a real-time
controller, even in slow systems, such as motors, etc..

Another possibility is to tabulate all the
values that can be obtained from this calculation. This
is possible because the inputs can only have a finite
number of values, depending on the number of
resolution bits of the A/D converter, and there are a
finite number of membership function, previously
defined for each application, and a finite number of
rules. However, it requires a high amount of memory
since the table size depends exponentially on the
number of inputs, the number of resolution bits and
lineally with the number of outputs. For each output it
is necessary a table which size will be (2 nº of bits) nº of

inputs .
To reach a compromise between computation

power and memory size needed, we decided to use a
semi-tabular method, that is composed by the
following steps (figure 1).

1) With the inputs, their regions and each region
membership function defined, we build a membership
table that, for every possible value of the input, gives
the degree of membership to each region (1 byte). So,
the fuzzyfication method consists only in accessing this
table. The table size is given by the maximum number
of inputs (8), the maximum number of regions per
input (8) and the possible values of each input (1024 =
10 resolution bits). So, the size is 8x8x1024 = 64
Kbytes.

2) With the outputs, their regions and each region
membership function defined, we build an area table
that, for every possible value of the output, gives the

Membership
table

(64 Kbytes)

Input
table

(32 bytes)

Area
table

(64 Kbytes)

Output
table

(32 bytes)

Rule
table

(2304 bytes)

Input
image

(32 bytes)

Output
image

(32 bytes)

Input
information

(from buffer)

Output
information

(from buffer)

Rule
information

(from buffer)

Figure 1. Table calculation.

total area below that value in the membership function
and the momentum related to the origin. The table size
is given by the maximum number of outputs (8), the
maximum number of regions per output (8) and the
possible values of the degree of membership (128) and
the bytes needed to store the area and momentum (8).
So, the size is 8x8x128x8 = 64 Kbytes.

3) With the rules, we build a rule table. The table size
is given by the maximum number of individual rules
(256) and the maximum number of antecedents (8) that
form a simple antecedent, the number of bytes needed
to represent the region involved in each antecedent (1)
and the region of the consequent of the rule (1). So, the
total size is 256x(8x1+1x1) = 2304 bytes.

4) With the definition of the inputs, we build an input
table that gives information about the input type
(analog, digital, unipolar, bipolar), the number of
regions described, etc.. This table is 32 bytes wide.
When the application is running we build another table
called input image, that contains the input type and
the present value of each input and it is 32 bytes wide,
too. In the same way, we build the output table,
auxiliary for calculating the value of the outputs while
the system is running, and the output image, each 32
bytes wide.

All these tables, except the input and output
images, do not change their contents once defined for
a specific application. When we initiate the process,

that is, the fuzzy control of the target system, first the
table values are calculated and memorized in the
equipment RAM and then, each processing cycle is
composed by the following steps (figure 2).

1) The values for the inputs are obtained, storing them
in the input image.

2) The membership table is used to obtain the degree
of membership to each region for every input.

3) With these degrees of membership (x) and their
complementaries (127-x) we build a membership
vector, 128 bytes wide.

4) With this vector, the rules are applied through the
rule table, obtaining the consequent (pair output-
region) and calculating the value of the degree of
membership for this rule. This information is stored in
the level table.

5) The defuzzyfication is achieved by adding the areas
and momentums related to the fired rules. The values
for each output are calculated using the information of
the level and area tables and are stored in the auxiliary
output table, 128 bytes wide.

6) The final value of each output is obtained dividing
total momentum by total area and storing the results in
the output image. These values are written to the
outputs in the end of the cycle.

Although integer arithmetics is used to
simplify the calculation, the maximum errors do not
reach 3 units in 1024, this is, 13 mV. in a range of 0-5
V.

6. PRACTICAL RESULTS

Using the maximum number of rules, 64, 4
inputs with an average number of regions per input of
4, the total cycle time is below 14 ms., this is, about 70
cycles per second, that is enough for many typical
mechatronics applications.

Membership
table

(64 Kbytes)

Input
image

(32 bytes)

Area
table

(64 Kbytes)

Auxiliary
output table
(128 bytes)

Rule
table

(2304 bytes)

Membership
vector

(128 bytes)

Output
image

(32 bytes)

Level
table

(512 bytes)

Analog
and

digital
inputs

Analog
and

digital
outputs

Figure 2. Cycle execution

Figure 3. Home plumbing.

Figure 4. Membership functions for Water
Flow.

Figure 6. Membership functions for Valve
Aperture.

Figure 5. Membership functions for Water
Temperature.

7. TUTORIAL EXAMPLE

We have chosen a modern home application,
water temperature and flow control to show the
powerness and simplicity of this equipment. As you
can see in figure 3, there are two valves to control the
flow and and two sensors to measure the temperature
of cold and hot water and one more sensor to measure
the flow of the resulting mixture.

The memberships functions that we have
defined for the flow (F), the temperature (T) and the
valve aperture (V) are in figures 4, 5 and 6. The rules
in table 1 represent the valve aperture (output)
depending on the values of flow and temperature
(inputs). The value "nothing" means that the last value
is not changed. With these rules, the processor

Table 1
Valves aperture (fired rules)

Flow

Very small Small Enough Great

Temperature

Very cold

Cold

OK

Hot

Very hot

Cold nothing
Hot very high

Cold nothing
Hot high

Cold very high
Hot very high

Cold high
Hot nothing

Cold very high
Hot nothing

Cold nothing
Hot very high

Cold nothing
Hot high

Cold high
Hot high

Cold high
Hot nothing

Cold very high
Hot nothing

Cold medium
Hot very high

Cold medium
Hot high

Cold nothing
Hot nothing

Cold high
Hot medium

Cold very high
Hot medium

Cold low
Hot high

Cold medium
Hot nothing

Cold medium
Hot medium

Cold nothing
Hot medium

Cold high
Hot low

executes 150 cycles/s, so the response time of the
controller is optimal and negligible to the potential
user.

We have tried some other applications like
direct current motor velocity control and simulation of
the Sugeno's mobile and the results are very
satisfactory in precission and speed.

8. CONCLUSIONS

To summarize this work, we can stand out the
following characteristics:
- Compact, strong and easy to use fuzzy application
development equipment.
- Reduced hardware costs since many components are
recovered from old PCs.
- The computational method uses tables as well as
integer calculation, achieving a reasonably speed with
a low amount of memory.
- Flexibility is one of the keys, so this equipment can
be used as a data acquisition system or as any other
(non-fuzzy) control application development system.
- It works on both slave (computer attached) and stand-
alone modes.

- The code is written in assembler so it is optimized.

In figures 7, 8 and 9 you can see the fuzzy
application development equipment (VER FOTOS
PÁGINA WEB).

9. FUTURE DEVELOPMENTS

- Development of Windows-based interface.
- Reduce the board size, using programmable circuits
such as FPGAs.
- Increase the computation speed, substituting the 8088
for another faster microprocessor.

10. BIBLIOGRAPHY

[BRUBAKER 92] BRUBAKER, David I.,
SHEERER, Cedr ic ,
"Fuzzy-logic system solves
control problem", EDN,
June 18, 1992.

[CONNER 93] CO N N E R , D o u g ,
"Designing a fuzzy-logic

control system", EDN,
March 31, 1993.

[CUBILOT 95] Cubilot Rodríguez, Marta,
"Aplicación de la lógica
borrosa al control de
velocidad de un motor de
corr iente cont inua",
Proyecto Fin de Carrera,
Universidad de Vigo,
Vigo, 1995.

[LEGG 93] L E G G , G a r y ,
"Microcontrollers embrace
fuzzy logic", EDN,
September 16, 1993.

[MANZANEDO 97] M a n z a n e d o G a r c í a ,
Antonio, "Equipo para el
desarrollo de aplicaciones
de lógica borrosa",
Proyecto Fin de Carrera,
Universidad de Vigo,
Vigo, 1997.

[NEURALOGIX 91] Fuzzy Microcontroller
Development System
M a n u a l , Ame r i c a n
Neuralogix Inc., 1991.

[SUGENO 85] Sugeno, M., Nishida, M.,
Fuzzy control of model
car, Fuzzy Sets and Syste
ms 16, pp. 103-113, 1985.

